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Abstract—High Bandwidth Memory (HBM) is a promising
solution for overcoming memory bottlenecks in high-performance
computing, but it remains susceptible to memory errors. Our
empirical study on high-performance computing platforms that
serve large AI model training with over 80,000 HBMs, re-
veals that HBM errors have a high burst rate. As a result,
conventional failure prediction methods that heavily rely on
historical error data are ineffective. Through investigating the
locality of uncorrectable errors (UCEs) of HBMs, we found that
failure patterns at the bank level primarily exhibit aggregation
tendencies, suggesting that errors in neighboring rows are often
related. Based on these insights, we propose Cordial, a cross-
row failure prediction method based on bank-level error locality.
Cordial adopts a hierarchical approach: it first utilizes bank-level
error information to predict the bank-level failure pattern. Our
approach classifies bank-level failure patterns into three cate-
gories: double-row clustering, single-row clustering (these two are
aggregation patterns), and scattered patterns. Then, it leverages
spatial locality to guide cross-row predictions for aggregation
patterns. Evaluation results show our method improves the F1-
score by up to 90.7% and enhances the isolation coverage rate
by 47.1%, demonstrating its practical applicability.

Index Terms—High bandwidth memory; Memory failure pre-
diction; Memory system reliability.

[. INTRODUCTION

With the emergence of large language models (LLMs), e.g.,
GPT and LLaMA, there has been a considerable increase in the
scale of ultra-massive datasets, leading to a growing demand
for rapid computation [1]. There is an exponentially growing
trend of Al accelerators, e.g., neural-network processing units
(NPU), that focus on increasing computing performance [2].
However, the growing exponent for GPUs or NPUs is substan-
tially larger than that for dynamic random-access memories
(DRAMSs) [3]. Thus, the latency of data movement between
memory and Al accelerators is becoming the bottleneck in
large-scale Al model training [4]. The increasing gap between
the computing power and the memory bandwidth is known
as the memory wall, especially in modern LLM training
systems [5]. Several studies have delved into mitigating the
impact of the memory wall, including utilizing bandwidth-
effective DRAM cache [6], software [7], [8] or hardware
prefetching [9], [10], and designing new system architectures
like processing-in-memory architecture [11], [12]. Recently,
High bandwidth memory (HBM) has gained tremendous atten-
tion as a promising solution to alleviate memory bottlenecks
fundamentally [1], [13] and established itself as the memory
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solution for high-performance computing workloads like LLM
training.

In modern LLM training systems, infrastructure failures
are inevitable during the training process [14], which may
cause devastating consequences. Specifically, in large-scale
model training clusters with more than 10,000 NPUs, sys-
tem failure or slowdown can significantly impede training
efficiency and waste expensive NPU time, resulting in large
revenue loss [15]-[17]. Hardware failures, especially memory
failures, are among the most significant reasons for training
job crashes or slowdowns [18], [19]. Unfortunately, due to its
stacking structure, HBMs not only exhibit the errors of DRAM
but also suffer from new errors, e.g., TSV faults. Besides,
conventional error correction codes (ECC) are insufficient
to correct malfunctions of sub-wordline drivers (SWDs) in
HBMs [20], a primary cause of errors, making HBM even
more vulnerable to unexpected errors. Thus, it is of great
significance to proactively predict HBM failures to ensure the
reliability of the high-performance computing platform that
serves for Al model training.

To mitigate HBM failures, isolating faulty regions is a com-
mon strategy to prevent continuous error propagation. Various
hardware-sparing mechanisms exist at different micro-levels,
like row sparing. Bank sparing is another mechanism, but it
requires significantly higher hardware redundancy and incurs
greater costs. Additionally, software-sparing mechanisms like
page offlining in operating systems can be employed to avoid
memory errors. Existing studies [21] highlight the importance
of applying different correction strategies depending on fault
rates, as interruptions during data copying can sometimes
result in unsuccessful recovery when pages are locked. Thus,
selecting appropriate recovery techniques is essential for main-
taining system reliability.

Row-level failure prediction emerges as a more practical
solution in industrial scenarios due to its lower cost and
more targeted approach. Existing HBM failure prediction
frameworks, e.g., Calchas [5], leverage hierarchical models
that incorporate spatial, temporal, and sensor information from
various device levels to anticipate failures. However, our anal-
yses and validations indicate two main limitations that hinder
their industrial application. Firstly, predicting failures without
recommending corresponding mitigation strategies limits the
actionable insights provided and does not fully align with
practical industrial requirements. Secondly, these methods rely
on historical error information to predict future errors in
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the same rows, i.e., in-row failure prediction. This can be
ineffective in scenarios with high sudden error rates (i.e.,
95.61% in row-level) where useful historical data is lacking,
which is precisely the challenge we face in our industrial
scenarios.

In this paper, we introduce a new paradigm of cross-row
failure prediction, which contrasts with the existing in-row
failure prediction approach. Instead of predicting errors within
the same row where historical error information may often
be missing, cross-row prediction allows us to predict error
rows based on error information from other rows. This is
particularly advantageous in scenarios with high sudden error
rates. We conducted a comprehensive empirical study that
revealed a significant practical challenge: the high ratio of
sudden errors in HBMs within the high-performance com-
puting clusters renders existing in-row prediction methods
ineffective. We further examine bank-level failure patterns,
discovering that aggregation (clustering) patterns predomi-
nate. Additionally, our analysis of error locality indicates
the feasibility of predicting cross-row errors in neighboring
areas. Building on these insights, we propose the Cross-row
Failure Prediction Method Based on Bank-level Error Locality
(Cordial). Our framework begins by classifying bank-level
failure patterns into three categories: double-row clustering,
single-row clustering, and scattered patterns. For the first two
patterns, we apply row-sparing techniques, while bank-sparing
is used for the scattered pattern due to its extensive error
distribution, which targets the first challenge. Leveraging the
locality of errors in aggregation patterns, we perform cross-
row failure prediction for the double-row clustering and single-
row clustering patterns in the neighboring areas of current
error rows, which effectively addresses the second challenge.

To sum up, we make the following contributions:

« We conduct a comprehensive empirical study focusing on
the sudden error ratio, failure patterns at the bank level,
and the locality of error rows using a large-scale dataset
from real-world high-performance computing platforms
that serve for LLM training, comprising over 10,000
NPUs and 80,000 HBMs.

e We propose the Cross-row Failure Prediction Method
Based on Bank-level Error Locality, bridging the gap left
by existing methods that struggle with sudden errors in
the absence of historical error data. To the best of our
knowledge, this is the first work that falls into the cross-
row failure prediction paradigm.

« We evaluate our framework using an industrial dataset
from large-scale, high-performance computing clusters.
Our approach achieves up to a 90.7% improvement in
F1-score and a 47.1% improvement in isolation coverage
rate, demonstrating its superior performance in industrial
settings.

II. BACKGROUND

In this section, we provide an overview of the HBM
organization and introduce the error types in HBM. Then, we
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introduce cross-row failure prediction, which is different from
existing in-row prediction.

A. HBM Organization

Unlike traditional planar memory architectures such as
DRAM, HBM features a 3D-stacked design composed of
multiple DRAM dies. This structure enables HBM to provide
substantially higher data transfer rates. For instance, HBM2
can achieve a bandwidth of approximately 256 GB/s per
stack [22], and this bandwidth is further increased to 512
GB/s in HBM2E [1]. In common LLM training platform
scenarios, each compute node is equipped with 8 NPUs,
with each NPU featuring two sockets for installing HBMs.
HBMs are constructed via an 8Hi stack (with eight DRAM
dies) [23]. Every four dies are packed together, forming two
stack IDs (SIDs). A DRAM die in the stack typically consists
of 8 channels (CH), while a channel can be further divided
into two pseudo-channels (PS-CH). Each pseudo-channel is
further constituted of 4 bank groups (BG), and four banks
are distributed in each group. The banks are two-dimensional
arrays consisting of cells indexed by rows and columns. Each
cell contains multiple bits. Figure 1 illustrates the overall
architecture of HBM. The fundamental structure of HBM is
composed of a logic die at the bottom and stacked DRAM
dies [24]. The logic die with I/O buffers serves as the control
and communication module for the entire HBM [25]. The
DRAM dies are connected by through-silicon vias (TSVs)
and micro-bumps, which are vertical electrical connections
that run through the silicon substrate, to offer high bandwidth
pathways [5].

B. HBM Errors

We refer to HBM error as the situation in which an HBM
delivers data to the memory controller that is inconsistent
with the original data through the ECC [26]. According to
the number of bit errors and the correction capability of the
ECC, HBM errors can be divided into correctable errors (CE)
and uncorrectable errors (UCE). CE refers to the errors within
the correction capability of ECC that can be successfully
recovered, e.g., a single-bit error in HBM that can be corrected
by ECC. Patrol scrubbing is employed as a proactive error
detection and correction technique [5] in memory systems.
It involves periodically scanning the memory to identify and
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correct errors before these errors are accessed. Even though
correctable, CEs can be accumulated over time to become
uncorrectable [27]. UCEs refer to errors that exceed the
correction capability of ECC and are not correctable [28].
They can be further categorized into two subtypes based on
the necessity to take action to address the errors and the
actual impact on the business of the errors: Uncorrectable
Error Action Optional (UEO) and Uncorrectable Error Action
Required (UER).

C. Cross-row Failure Prediction

Given the high cost associated with bank sparing, row
sparing becomes a preferable option in HBMs of large-scale
LLM training systems. As such, row-level prediction becomes
essential in optimizing resource allocation and enhancing the
overall reliability of these systems. Existing methods focus on
forecasting UERs by analyzing patterns of prior errors within
the same row. The assumption is that these historical errors can
serve as precursors to future failures. However, in-row failure
prediction methods often fall short in practical applications.
Our empirical studies conducted on large-scale datasets in
Huawei reveal that many UERs occur abruptly, without any
prior error indications. This unpredictability renders in-row
failure predictions inadequate for industrial use. Recognizing
this gap, we propose cross-row failure prediction, which
leverages the spatial and temporal information of errors across
rows within the same HBM bank. The comparison of these two
paradigms is illustrated in Figure 2.

III. EMPIRICAL STUDY

In this section, we present an empirical study to understand
the characteristics of sudden UER, failure pattern and the
locality of UER rows, which motivates our method design.

A. Sudden UER Ratio

As described in the literature [29], there are two types of
UERs: sudden UERs, which result from component malfunc-
tions that immediately corrupt data, and non-sudden UERs,
which are predictable and initially appear as CEs and UEOs
but evolve into UERs over time. Sudden UERs are typically
considered unpredictable, meaning existing in-row failure pre-
diction frameworks cannot effectively address them. In Table I,
we present the ratio of sudden UERs observed in an industrial
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TABLE I
IN-ROW PREDICTABLE RATIO OF UERS

Micro-level ~ Sudden UER  Non-sudden UER  Predictable Ratio

NPU 243 175 41.86%
HBM 246 175 41.56%
SID 260 180 40.91%
PS-CH 311 185 37.29%
BG 434 252 36.73%
Bank 760 314 29.23%
Row 4980 229 4.39%

dataset, which includes more than 10,000 NPUs and 80,000
HBMs. Our analysis reveals that the behavior of sudden UERs
in HBMs is markedly different compared to traditional DDR4
and DDR5 memory systems. Specifically, the ratio of sudden
UERSs increases drastically as we move from the NPU level
to the row level, with sudden row UERs accounting for more
than 95% of all UERs. This underscores the limitations of
existing in-row prediction methods, rendering them impractical
for managing sudden UERs at the row level.

B. Bank-Level Failure Patterns

Our empirical analysis has identified several distinct fail-
ure patterns at the bank level: double-row clustering pattern
(including half total-row clustering), single-row clustering pat-
tern, scattered pattern, and a special case of scattered pattern
known as the whole column pattern with the error dispread in
nearly all the rows. Figure 3(a) illustrates examples of these
failure patterns. The single-row clustering pattern, comprising
68.2% of observed UER banks, is characterized by errors
concentrated within a contiguous, narrow area, facilitating
easier failure prediction due to its spatial locality. Double-row
clustering, which includes the half total-row clustering variant,
accounts for 9.9% of UERs. This pattern features two clusters
of UERs with a consistent interval between them, making
prediction manageable by leveraging the predictable spacing
between clusters. The scattered pattern is more complex, with
UERs distributed irregularly across the bank, representing
12.5% of UERs. Within this category, column failure—a
special case where UERs appear across all rows of a col-
umn—accounts for 7.3%. This pervasive distribution necessi-
tates bank-sparing techniques, as the unpredictable nature of
errors complicates row-level failure mitigation.

Our analysis of the industrial dataset, as depicted in Fig-
ure 3(b), reveals that while scattered patterns pose challenges,
the prevalence of aggregation patterns (78.1% combined)
indicates that cross-row failure prediction remains feasible for
the majority of cases. This insight underscores the practical
applicability of targeted prediction strategies in managing
memory failures within high-performance computing systems.

C. Locality of Cross-row UER

Since the single-row clustering pattern is characterized by
UERSs concentrated within a narrow and contiguous area, this
spatial concentration can be advantageous for cross-row UER
prediction, as it suggests that subsequent UERs are likely to
occur in the vicinity of the existing UER row. Thus, we explore
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the locality of cross-row UERs to determine the effective
range within which predictions can be made. To quantify this
locality, we compute the chi-square statistic of subsequent
UERSs occurring within various row distance thresholds from
the current UER row. These thresholds range from 4 to
2048 rows. Our analysis indicates that the strongest statistical
significance is achieved at a threshold of 128 rows, as shown
in Figure 4. This suggests that predicting UERs within a 128-
row range is both manageable and effective, enabling us to
focus our prediction efforts and redundant resources on the
most likely areas for subsequent UERs.

IV. METHODOLOGY

Based on insights from our empirical study, we propose
the Cross-row Failure Prediction Method Based on Bank-level
Error Locality (Cordial). Cordial is designed to predict failures
in a cross-row manner, effectively addressing the limitations
of existing in-row prediction methods.

A. Overview

The overall workflow of Cordial is illustrated in Figure 5,
which consists of three stages: failure pattern feature extrac-
tion, failure pattern classification and cross-row failure pre-
diction. We first collect the raw error log from the baseboard
management controller (BMC) and then generate a set of
spatial and temporal features (e.g., the average row difference
between two successive UER rows) with all CEs, UEOs and
the first three UERSs for each bank. Then, we use the generated
features to train tree-based predictors and output the failure
pattern of the current bank. We finally utilize the cross-row
UER predictors to anticipate whether there are UER rows
in the neighboring rows for aggregation patterns and conduct
isolation for these predicted error rows. Otherwise, all banks
with scattered row patterns will be isolated directly.
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B. Failure Pattern Feature Extraction

Before training prediction models, we first generate rep-
resentative features for both failure pattern classification and
cross-row failure prediction. For each error event, the address
of errors, the time of error occurrence, and the error types
are recorded. Thus, we generate the following features for the
predictors:

o Spatial features. Intuitively, the row number of errors and
the row difference between errors can be indicators of
whether there is error aggregation. Thus, we compute the
minimum and maximum of CE, UEO, and UER rows and
the minimum, maximum, and average row differences
between two consecutive errors. These features help
identify patterns that may indicate clustering or dispersion
of errors within the data.

o Temporal features. From another perspective, there may
be more frequent errors when there is error aggregation,
as errors can soon propagate to nearby rows. Temporal
features can provide insights into the frequency of error
occurrences, enabling the prediction models to detect
temporal patterns and trends that may signal impending
failures. Thus, we compute the minimum and maximum
occurrence time difference of CEs, UEOs, and UERs.

o Count features. When there are many CEs and UEOs in
a bank, it can indicate a higher likelihood of having more
UERs, suggesting a scattered pattern. Conversely, if there
are not a very large number of errors, it may indicate
a single-row clustering pattern. Therefore, we compute
the total counts of CEs and UEOs before the first UER
happens within the bank. These count features provide a
measurement of error density.

C. Failure Pattern Classification

Tree-based machine learning approaches have been widely
used in memory failure prediction literature [27] due to their
fast learning and satisfactory performance. Thus, we leverage
three tree-based machine-learning techniques for cross-row
prediction: Random Forest, XGBoost, and LightGBM because
they are lightweight, easy to deploy, and have low computation
costs in industrial applications. If the classification reveals
a single-row clustering or double-row clustering pattern, we
proceed with cross-row prediction, as these patterns indicate a
clustering distribution of UER rows. In contrast, if the pattern
is identified as scattered, the UER rows are widely distributed
across many rows, making it difficult to mitigate the failure

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 20,2025 at 07:14:24 UTC from IEEE Xplore. Restrictions apply.



Probability of UER in

Failure Pattern
Feature Extraction

Failure Pattern
Classification

Cross-Row Failure
Prediction

neighboring rows

Failure Pattern

Q&

Error Banks
Failure Pattern Features
First three UERs %
]
Error Rows
/\ Classifier
C @ Double-row

|

Spatial
features

Temporal

[ Single-row
features

Clustering

I

Clustering

Single-row  Double-row
Clustering ~ Clustering

Scattered ]
Predictor  Predictor

Pattern

Fig. 5. The Overview of Our Proposed Method Cordial

through row isolation. In such cases, directly replacing the
bank or NPU is more feasible, and cross-row failure prediction
is not triggered.

It should be noted that our objective is to use as few error
events as possible to determine the failure pattern, enabling
us to select specific prediction models quickly. Early pattern
identification is crucial for timely intervention. However, using
all UERs for pattern classification can become impractical
due to the need for rapid decision-making. On the other
hand, when only a single UER is observed, it is challenging
to distinguish between aggregation and scattered patterns.
Similarly, differentiating between a double-row clustering and
a scattered pattern can also be difficult with limited data.
We use the first three UER information for failure pattern
classification, providing a pragmatic trade-off.

D. Cross-row Failure Prediction

Based on our study of the locality of cross-row UERs, we
focus on predicting the occurrence of UERs within a 128-
row range, i.e., 64 rows above and below the last UER row.
To facilitate this prediction, we divide these 128 rows into 16
blocks, each containing 8 rows. Our goal is to predict whether
there will be a UER in each of these blocks. In cross-row
failure prediction, we leverage a variety of features for our
tree-based models, including:

o Spatial Features: We incorporate the specific row num-
bers where CEs, UEOs, and UCEs occur to identify po-
tential aggregation points within the memory architecture.
Additionally, we analyze the differences in row numbers
between consecutive errors to discern patterns of disper-
sion or clustering, which are critical for understanding
the spatial dynamics of error propagation.

o Temporal Features: We examine the time intervals be-
tween consecutive occurrences of each error type to
capture the temporal patterns underlying cross-row errors.
We also measure the time difference from the last error
event to highlight recent temporal trends.

e Count Features: We include the total counts of CEs,
UEOs, UCEs, and all error types within the bank to
provide a comprehensive overview of error density.

These features are utilized within tree-based models, such
as Random Forest, to effectively predict the likelihood of
UERs in each block. Our approach is tailored to address
the specific challenges of cross-row UER prediction in HBM

TABLE II
A SUMMARY OF THE INDUSTRIAL DATASET

Micro-level With CE ~ With UEO  With UER  Total Count
NPU 5497 327 418 5703
HBM 5944 330 421 6155

SID 6049 341 440 6277
PS-CH 6856 360 496 7136
BG 7571 423 686 7970
Bank 8557 537 1074 9318
Row 51518 4888 5209 60693

systems by focusing on this block-level prediction, leveraging
the localized nature of errors to inform timely interventions.

V. EVALUATION

In this section, we first present a summary of the datasets
and the evaluation metrics. Finally, evaluation results are
presented to demonstrate the effectiveness of Cordial.

A. Experimental Settings

We collected the MCE log and memory events from the
BMC of HBMs in a large-scale LLM training system. All
the CE, UEO, UER events are recorded in MCE log [27],
including details about memory error addresses (e.g., server
number, bank, row). We examine error logs from the large-
scale LLM training platform containing more than 10,000
NPUs and 80,000 HBMs, where the summary is shown
in Table II. We split the dataset into a proportion of 7:3,
with 70% used for training the model and the remaining
30% for testing [5]. We assess the precision, recall and F1
score for both the failure pattern classification and cross-
row failure prediction. Additionally, we assess the Isolation
Coverage Rate (ICR) to gauge the practical effectiveness of
deploying our prediction framework. This metric measures
the proportion of UER rows that can be preemptively isolated
based on our cross-row failure predictions, thereby preventing
potential failures. Through this evaluation metric, we aim to
demonstrate the tangible benefits of our framework in real-
world applications.

B. Evaluation Results

We employed three tree-based models, i.e., LightGBM,
XGBoost, and Random Forest, for failure pattern classifica-
tion. The performance of these models is shown in Table III.
Among them, Random Forest demonstrated the best overall
performance. This can be attributed to its ensemble learning
approach, which effectively reduces variance and improves
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TABLE III
PERFORMANCE OF FAILURE PATTERN CLASSIFICATION

Pattern LightGBM XGBoost Random Forest
Precision ~ Recall ~F1 Score  Precision  Recall ~FI Score Precision Recall F1 Score

Double-row Clustering 0.600 0.474 0.529 0.611 0.289 0.393 0.633 0.500 0.559

Single-row Clustering 0.921 0.972 0.946 0.881 1.000 0.937 0.921 0.981 0.950

Scattered Pattern 0.672 0.629 0.650 0.698 0.597 0.643 0.696 0.629 0.661

Weighted Average 0.833 0.844 0.837 0.803 0.835 0.813 0.842 0.859 0.854
TABLE IV prediction (19.58% over 4.39%). This randomness underscores
PERFORMANCE OF DIFFERENT FAILURE PREDICTION METHODS the challenge of accurately predicting failure patterns, yet
Methods Procision  Recall I Score  ICR (%) our framework’s i.ntellig.ent block sele.ction strategy effe.ctively
Neighbor Rows 0322 0.393 0.347 1331% addresses these difficulties. By adopting our new paradigm of
COdeilal'LGBM 0.642 0.504 0.563 18.60% cross-row failure prediction, we believe industries can achieve

Cordial-XGB 0.732 0.509 0.591 18.87% . .

Cordal DT 0306 0350 0.662 1958% more robust and proactive management of memory failures,

accuracy by averaging the predictions of multiple decision
trees. LightGBM and XGBoost, both based on boosting tech-
niques, inherently accumulate errors over iterations as they
sequentially build models to correct the errors of previous
models. While this can enhance performance in some cases, it
can also lead to overfitting, which might explain their relatively
lower performance compared to Random Forest.

Regarding the failure pattern classification, the single-row
clustering pattern proved to be the most effectively classified,
achieving the highest precision, recall, and F1 scores. This is
because when the first three UER rows are neighboring each
other, a single-row clustering pattern is strongly indicated. This
proximity of the initial errors allows for easier identification of
the pattern. The classification of the other two patterns, double-
row clustering and scattered, is slightly more challenging but
still satisfactory. If the three UER rows are scattered across
different areas of the bank, it suggests a scattered pattern.
Conversely, if one UER row is distant from the other two,
which are clustered together, a double-row clustering pattern
is more likely. This approach of using only the first three UER
rows is strategic, leveraging the minimal but necessary error
information to achieve effective classification.

As previously mentioned, the sudden UER ratio can reach
as high as 95.61% at the row level, indicating that existing
methods are ideally capable of predicting only 4.39% of UERs.
Therefore, to ensure a fair comparison, we benchmark our
approach against an industrial baseline. This baseline method
isolates the eight rows adjacent to an identified UER row,
aiming to prevent further propagation of errors within the
immediate vicinity. Compared to this baseline, our method
demonstrates significantly improved performance across vari-
ous metrics, including weighted precision, recall, and F1 score
of all prediction blocks, as well as in practical industrial
evaluation metrics such as Isolation Coverage Rate (ICR),
which is shown in Table IV. Notably, the strong performance
of Random Forest aligns with the results of the failure pattern
classification, reinforcing its effectiveness. Though our method
achieves a 19.58% isolation coverage rate due to the inherent
randomness of UER rows that adds complexity to the problem,
it is substantially higher compared to traditional in-row failure
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ultimately improving system stability and performance.

VI. RELATED WORK

With the increasing demand for fast and high-capacity
memory due to the emergence of large language models
(LLMs), HBM has gained tremendous attention and is con-
sidered a promising technology to overcome the memory
bottleneck [1], [30]. Though the memory access bandwidth
is enhanced via stacking up multiple DRAM dies through
TSVs, new reliability issues are introduced for HBM due
to the vertical architecture. Specifically, some studies [31]
reveal that poor-quality micro-bump joints caused by thermal
compression bonding (TCB) affect the reliability of HBM.
Besides, TSVs are also prone to faults as micro-bumps with
micrometer size must be precisely aligned with the TSVs,
where shocks may occur and lead to the potential damage
of TSVs [32]-[34]. Some studies also investigate reliability
issues under inappropriate operating conditions, for example,
a higher rate of bit flips occurs when reducing the voltage [35].
HBM also shares similar reliability degradation caused by read
disturbance vulnerability (e.g., RowHammer and RowPress)
with DRAM [25]. Apart from the studies on the hardware
characteristics of HBM, a hierarchical HBM failure prediction
framework, Calchas, that utilizes spatial, temporal, and sensor
information at different device levels has been proposed in [5].

VII. CONCLUSION

In this work, we conduct a comprehensive empirical study
that highlights the challenges of sudden error and the failure
patterns in HBMs of high-performance computing platforms.
Motivated by these findings, we propose a cross-row fail-
ure prediction method based on bank-level error locality,
effectively addressing the limitations of traditional in-row
prediction methods in high sudden error rate scenarios. The
evaluation results demonstrate significant improvements in
prediction accuracy and isolation coverage, demonstrating the
practical usefulness of our framework.
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