
KPIRoot: Efficient Monitoring Metric-based Root
Cause Localization in Large-scale Cloud Systems

Wenwei Gu∗, Xinying Sun‡, Jinyang Liu∗, Yintong Huo∗, Zhuangbin Chen†, Jianping Zhang∗,
Jiazhen Gu∗, Yongqiang Yang‡, and Michael R. Lyu∗

∗The Chinese University of Hong Kong, China.
Email: {wwgu21, jyliu, ythuo, jpzhang, lyu}@cse.cuhk.edu.hk, jiazhengu@cuhk.edu.hk

†Sun Yat-sen University, China. Email: {chenzhb36}@mail.sysu.edu.cn
‡Huawei Cloud Computing Technology Co., Ltd, China. Email: {sunxinying1, yangyongqiang}@huawei.com

Abstract—To ensure the reliability of cloud systems, their run-
time status reflecting the service quality is periodically monitored
with monitoring metrics, i.e., KPIs (key performance indicators).
When performance issues happen, root cause localization pin-
points the specific KPIs that are responsible for the degradation
of overall service quality, facilitating prompt problem diagnosis
and resolution. To this end, existing methods generally locate
root-cause KPIs by identifying the KPIs that exhibit a similar
anomalous trend to the overall service performance. While
straightforward, solely relying on the similarity calculation may
be ineffective when dealing with cloud systems with complicated
interdependent services. Recent deep learning-based methods
offer improved performance by modeling these intricate depen-
dencies. However, their high computational demand often hinders
their ability to meet the efficiency requirements of industrial
applications. Furthermore, their lack of interpretability further
restricts their practicality. To overcome these limitations, we
propose KPIRoot, an effective and efficient method for root cause
localization integrating both advantages of similarity analysis and
causality analysis, where similarity measures the trend alignment
of KPI and causality measures the sequential order of variation
of KPI. Furthermore, we leverage symbolic aggregate approxi-
mation to produce a more compact representation for each KPI,
enhancing the overall analysis efficiency of the approach. The
experimental results show that KPIRoot outperforms seven state-
of-the-art baselines by 7.9%∼28.3%, while time cost is reduced
by 56.9%. Moreover, we share our experience of deploying
KPIRoot in the production environment of a large-scale cloud
provider Cloud H*.

Index Terms—Root Cause Localization, Cloud System Relia-
bility, Cloud Monitoring Metrics, Cloud Service Systems

I. INTRODUCTION

Large-scale cloud systems, such as Microsoft Azure, Ama-
zon Web Services, and Google Cloud Platform, have revo-
lutionized the computing infrastructure landscape, providing
scalable, flexible, and cost-effective services to worldwide
users on a 7 × 24 basis [1], [2]. However, the inherent com-
plexity and scale of cloud service systems make performance
issues (e.g., slow application response time, service outages,
and resource overload) an inevitability [3], [4], which may lead
to potential violations of Service Level Agreements (SLAs),
causing user dissatisfaction and financial losses [5]. Thus,
promptly identifying and resolving performance issues has

Jiazhen Gu is the corresponding author.
*Due to the company policy, we anonymize the name as Cloud H.

become a significant concern for both cloud vendors and
users [6].

Cloud vendors usually collect real-time key performance
indicators (KPIs) to monitor the health status of their ser-
vices [7]. Anomaly detection is conducted over these KPIs
to identify performance issues based on this KPI data [8]–
[10]. For example, if the resource utilization rate is continu-
ously high, it may indicate an imminent service overload and
performance degradation. However, due to the scale of cloud
systems, it is infeasible to analyze the KPI of each instance
(e.g., VM and container) individually. Since a cloud service
typically consists of many instances, a common way is to
monitor specific KPIs that can reflect the overall performance
of the service, e.g., latency, error count, and traffic, which we
refer to as alarm KPIs. Automated performance issue detection
can thus be realized through configuring alerting rules or
performing anomaly detection algorithms on such alarm KPIs.
These underlying KPIs of individual instances or VMs within
a cloud service may not be directly analyzed due to the scale of
cloud systems. However, their collective behavior significantly
influences the alarm KPIs.

When a performance issue is detected (i.e., the alarm KPI is
abnormal), it is crucial to identify the root cause (e.g., which
underlying instances cause the abnormal performance of the
service). However, pinpointing the root cause is a non-trivial
task since the monitored alarm KPI is highly aggregated and
often derived [11], i.e., the correlation between the underlying
KPIs and the alarm KPI is complicated and hard to understand.
Even experienced software reliability engineers (SREs) can
struggle to pinpoint the specific KPIs that contribute to the
root cause. Such a manual approach is like finding a needle
in a haystack, which is tedious and time-consuming. Hence,
the automated root cause localization method is an urgent
requirement for prompt performance issue resolution.

In particular, a practical root cause localization approach
for KPIs from cloud systems should meet the efficiency and
interpretability requirements [12]. Specifically, due to the huge
volume of underlying KPIs and the tight time-to-resolve pres-
sure, the approach needs to be able to process large amounts
of data (e.g., thousands of KPIs) efficiently (e.g., in seconds).
Furthermore, the approach should produce interpretable results
to help engineers take effective remedy actions, which is essen-

403

2024 IEEE 35th International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/24/$31.00 ©2024 IEEE
DOI 10.1109/ISSRE62328.2024.00046

Fig. 1. The Overall Pipeline of Root Cause Localization in Cloud H

tial in the maintenance of cloud systems. Existing root cause
localization methods typically adopt statistics or deep learning
models. Statistic-based methods adopt Kendall, Spearman,
and Pearson correlation to compute the linear relationships
between KPIs and find the root cause [13]. However, these
methods have high computational costs to calculate the cor-
relation for every KPI pair and also suffer from low accuracy
in handling complicated KPIs from cloud systems [14]. Some
recent studies [11] adopt deep learning models (e.g., graph
neural networks) to model the KPI relationships for root
cause localization. However, such methods suffer from high
computation costs and lack interpretability [15], [16].

To address the above limitations, we propose KPIRoot,
an effective and efficient root cause localization approach to
identify the root cause underlying KPIs when an anomaly
in the monitored alarm KPI is detected in cloud systems.
To meet the efficiency requirement, KPIRoot first adopts
the Symbolic Aggregate Approximation (SAX) representation
to downsample the time-series data of KPIs and facilitate
extracting the anomaly segments. Through filtering out the
normal KPI data, KPIRoot can focus on the anomaly patterns
instead of the whole time series, which greatly optimizes
efficiency. Then, KPIRoot conducts both the similarity and
causality analysis to localize the root cause KPIs. Specifically,
the underlying KPIs with a high similarity of anomaly patterns
to the alarm KPI are more likely to trigger the alert and be
the root causes. On the other hand, causality analysis is used
to validate the cause and effect in the temporal dimension,
i.e., the anomaly pattern of root cause KPIs should happen
before that of the alarm KPI. Finally, KPIRoot combines
the similarity and causality analysis results to produce a
correlation score for each underlying KPI. The higher the
score, the more possibility there is that the KPI is the root
cause. The time complexity of KPIRoot is O(

√
n) (n is the

length of the KPIs), which allows it to process thousands of
KPIs in seconds, thus facilitating real-time performance issues
resolution.

To evaluate the effectiveness of our proposed KPIRoot, we
conducted extensive experiments based on large-scale real-
world KPI data from a large cloud vendor. The experimental
results demonstrate that KPI can pinpoint root cause KPIs
more accurately compared with seven baselines with an F1-
score of 0.850 and Hit Rate@10 of 0.917. On the other

hand, KPIRoot largely reduces the computation cost with
an execution time of around 5 seconds, which facilitates
engineers diagnosing root causes in real-time. In particular, we
have successfully deployed our approach in the cloud service
system of Cloud H since Nov 2022 and successfully localized
the true root cause of ten performance issues of emergence
level with 100 accuracy, without affecting the customer. We
also share the industrial experience in practice.

We summarize the main contributions of this work as
follows:
• We introduce KPIRoot, an effective and efficient method

to localize the underlying KPIs that cause the anomaly.
KPIRoot adopts the SAX representation for downsampling
and combines both the similarity and causality of anomaly
patterns of KPIs to identify the root cause. Such designs
meet the practical requirements of efficiency and inter-
pretability, making KPIRoot feasible to be deployed in large-
scale cloud systems.

• Extensive experiments on three industrial datasets collected
from Cloud H’s large-scale cloud system demonstrate the
effectiveness of KPIRoot, i.e., 0.85 F1-score and 0.917
Hit@10 rate. The average execution time of KPIRoot is
around 5 seconds, significantly outperforming seven state-
of-the-art baselines.

• We have successfully deployed KPIRoot into the trou-
bleshooting system of a large-scale cloud service system of
Cloud H since Nov 2022. It has successfully analyzed ten
emerging performance issues with 100 accuracy, and none
of the issues affected the customer. The success stories of
our deployment confirm the applicability and effectiveness
of our method.

II. BACKGROUND AND MOTIVATION

In this section, we briefly introduce the KPI-based root
cause analysis in cloud service systems and show the root
cause localization practice in a large-scale cloud service sys-
tem of Cloud H with a real case.

A. KPI-based Root Cause Localization in Cloud Systems

Ensuring optimal performance and reliability in cloud sys-
tems is of great importance. Performance anomalies like hard-
ware malfunctions, network overloads, and security violations
can significantly influence the performance of cloud systems

404

Fig. 2. An Industrial Case in Cloud H

and violate SLA [17]. Consequently, the need for run-time
status and performance monitoring of cloud systems is in de-
mand. Key Performance Indicators (KPIs) serve as informative
tools that monitor the overall status of various components
of cloud systems [18], providing helpful insights that aid
in the identification of potential anomalies [19], and even
proactively predicting these performance issues before they
escalate into catastrophic failures [20]. Some common KPIs
in cloud systems include CPU usage, memory usage, network
bandwidth, latency, error rates, and service QPS (queries per
second).

The cloud service system has become increasingly huge in
scale and produces larger volumes of monitoring data. The
highly interconnected nature of cloud systems incurs problems
that performance failures can spread from one component
to other components. Consequently, the failure diagnosis,
root cause localization, and performance debugging in large
cloud systems are more complex than before [21], [22]. In
real-world applications, monitoring a large number of KPIs
is computationally intensive, thus a more practical way is
monitoring the aggregated KPI and configuring alerts.

Specifically, in large-scale cloud service clusters, large
amounts of virtual machines (VMs) operate concurrently to
provide tenants with various services. A special KPI is the
”alarm KPI” that triggers alerts when a performance issue
like an overload of CPU usage in the entire cluster happens.
In large-scale cloud systems, service may consist of large
amounts of VMs working together to respond to cloud users’
demands [23]. Given the scale of these systems, individual
monitoring of each VM becomes infeasible. Instead, software
reliability engineers often utilize alarm KPIs as a more ef-
fective approach to oversee the overall performance of the
service. When the alarm KPI indicates abnormal activity, it
becomes crucial to identify which VMs are the root causes.
The root cause refers to the specific VMs that trigger the
anomaly within the alarm KPI. For instance, if the alarm KPI
is triggered due to a fairly high CPU usage, the root cause
could be the particular VMs that directly cause the resource
overload. Such a setup allows for the proactive identification of
performance issues. In addition to the alarm KPI, other KPIs
monitor the bytes per second (bps) and packets per second

(pps) of each VM in the cluster [24]. These KPIs offer valuable
insights into the data traffic of each user, serving as indicators
of their workload.

The overall pipeline of root cause localization using mon-
itoring KPI in Cloud H is shown in Fig.1. Cloud service
providers typically have many data centers spread across
different regions. Each region consists of multiple, isolated
locations known as availability zones to ensure low latency
and high availability [25]. Users can create their VMs in any
region that best fits their needs. Then, the behavior of both
the host CPU cluster and the VMs is continuously monitored
and recorded through KPIs including CPU usage, memory
usage, and netflow throughput. Next, KPI correlation analysis
is conducted to understand the dependencies between each VM
and the host cluster. Based on the KPI correlation analysis,
mitigation strategies such as VM migration or throttling are
enacted to alleviate the overload in the system. In our paper,
we focus on the third and the most significant part, namely
root cause analysis, and propose KPIRoot.

B. A Motivating Example

In a cloud system, there exist intrinsic correlations between
the KPIs of individual VMs and the alarm KPI [26], which is
a crucial part of RCA. Take the CPU usage in cloud systems
as an example, the correlation is based on the fundamental
principle of resource allocation within a cloud system that
each VM is allocated a portion of the cluster’s resources like
CPU [27]. When a VM’s workload increases, it consumes
more CPU resources, thereby affecting the overall CPU usage.
However, the relationship between the KPIs of individual VMs
and the overall CPU usage of the cluster is complex and
non-linear [28]. This complexity is due to the sophisticated
architecture of modern cloud systems and the principles of
resource allocation they employ. In other words, these mech-
anisms ensure that the resource usage of one VM does not
significantly impact others, thereby preventing a single VM
from monopolizing the CPU [29]. Thus, the bulge of the
workload KPI of a single VM does not necessarily lead to
alarm KPI trigger alerts.

To effectively identify the root cause of performance
anomaly, we capture the correlations between the VM KPIs
and the alarm KPI that depicts the contribution of VMs

405

Fig. 3. The Overview of Our Proposed Method KPIRoot

to the detected performance anomaly. This correlation often
manifests in a similar waveform between the VM’s KPIs and
the alarm KPI. For example, a sudden surge in a VM’s data
traffic would likely lead to an increased demand for CPU
resources, which would be reflected as a spike in the KPI
of the cluster’s CPU usage [30]. The KPI correlation analysis
approach aiming to mine the inherent correlations in KPI data
can be leveraged to pinpoint the root causes of system alerts.
In our case, similarity and causality analysis are adopted.
Firstly, similarity analysis allows us to identify which VMs
are behaving similarly to the overall system’s performance, as
reflected by the alarm KPI. Therefore, similarity analysis can
help narrow down the potential root causes of the anomaly.
Secondly, causality analysis is critical as it allows us to
determine which changes in VM KPIs occurred before the
anomaly, thus providing clues as to which VMs might have
triggered the anomaly.

An industrial case in a real-world cloud system cluster of
Cloud H is shown in Fig.2. There is an alarm KPI monitoring
the overall CPU usage of the cluster, and several VM KPIs
monitoring the network traffic of individual VMs. For the
purpose of discussion, we focus on four of the VM KPIs. We
can observe that the waveforms of VM2 and VM4 have weak
alignments with the fluctuations in the alarm KPI, indicating
a lower correlation, and thus are unlikely to be significant
contributors to the CPU overload. The KPI of VM1 and VM3
exhibit a high degree of similarity to the alarm KPI, indicating
they are potential root causes for the anomaly. However, to
ascertain the true root cause of the CPU overload, time series
causality, i.e., chronological order of events should also be
taken into consideration. As confirmed by the SREs, it is VM1,
not VM3, which is the true root cause of the CPU overload.
This is because the spike in VM1’s KPI precedes the CPU
overload anomaly, while the spike in VM3’s KPI happens
slightly after the anomaly, indicating that it is an outcome,
not a cause of the anomaly. Indeed, in a cloud system, a
VM’s increase in resource consumption usually precedes the
CPU overload due to temporal causality, which is why we take
temporal causality into consideration in our method.

III. METHODOLOGY

In this section, we present KPIRoot, an automated approach
for root cause localization with monitoring KPIs in cloud
systems. We first formulate the problem we target. Then
we provide an overview of the proposed method. Next, we
elaborate on each part of our method, i.e., anomaly segment
detection, similarity analysis, and causality analysis. We finally
analyze the complexity of our proposed algorithm.

A. Problem Formulation

The goal of our work is to identify the root causes of
performance anomalies like CPU overload in large-scale cloud
systems, based on the alarm KPI and observed individual KPIs.
The root causes are the VMs that influence the system service
quality. By throttling the throughput of these VMs, we can
alleviate the system-level anomaly and restore service quality.
Given the alarm KPI that monitors the status of the host cluster
Xhost ∈ Rn and the monitored KPIs of VMs, e.g., the netflow
of them Xi ∈ Rn, i ∈ {1, 2, ...,m}, where N denotes the
number of observations collected at an equal interval and m
is the number of monitored VMs. To determine the true root
cause of the detected anomaly, a correlation score ci ∈ [0, 1]
that represents the contribution of a VM KPI to the anomaly is
calculated. Then the root causes can be obtained by ranking the
correlation score and KPIs with the top K scores are deemed
as root causes.

B. Overview

The overview of KPIRoot is shown in Fig.3, which consists
of three key components, namely, anomaly segment detection,
similarity analysis, and causality analysis. Given the raw
monitoring KPI, to make the RCA more efficient and meet the
real-time requirement of industrial deployment, we propose
to adopt SAX representation to downsample the raw KPI.
Then KPIRoot detects the potential anomaly segments in the
downsampled alarm KPI of the host cluster (Section.III-C). In
this step, a score that describes the variation trend of KPI will
be computed, an anomaly segment will automatically extracted
around the spike. Then KPIRoot conducts a similarity analysis

406

Fig. 4. An Illustration of SAX Representation

to compute the similarity between VM KPIs and the alarm
KPI during the anomaly period (Section.III-D). This analysis
provides insights into how each VM influences the host cluster
by measuring the alignment of the KPI trends. A causality
analysis is then conducted (Section.III-E) to identify the cause-
and-effect between the VM KPIs and the alarm KPI. In
our case, we utilize Granger causality. The results from the
similarity and causality analyses are then combined to compute
a correlation score for each KPI.

C. Anomaly Segment Detection

To make KPIRoot efficient and meet the industrial re-
quirement of real-time identification, we propose to adopt
Symbolic Aggregate Approximation (SAX) [31]. SAX has
several advantages in KPI analysis: First, SAX allows for
a significant reduction in the dimension of the raw KPI,
which can make subsequent similarity computation more effi-
cient [32]. Second, SAX can effectively filter out the noise and
highlight the significant patterns in the KPIs by aggregating
several consecutive data points into a single ”symbol” [33].
Specifically, the raw KPI x of length n will be represented as
a w-dimensional vector P = {p1, p2, ..., pw}, where the jth

element can be calculated as follows:

pi =
w

n

n
w i∑

j= n
w (i−1)+1

xj (1)

In other words, to reduce the dimension of KPI from n to
w, the KPI is divided into w equal-sized subsequences. The
mean value of the subsequence is calculated and a vector of
these values becomes the Piecewise Aggregate Approximation
(PAA) representation [34]. Indeed, PAA representation is
intuitive and simple, yet shows an approximate performance
compared with more sophisticated dimension reduction repre-
sentations like Fourier transforms and wavelet transforms [31].
Before converting it to the PAA, we normalize each KPI to
have a mean of zero and a standard deviation of one.

In the industrial scenario, a fixed threshold method (e.g.,
CPU usage higher than 80%) is commonly used to detect
system resource usage anomalies. However, fixed thresholds
can be limiting as they do not adapt to changes in the
system’s behavior over time. Typically, an anomaly refers to
a state where the system’s resources, such as CPU, memory,

or network bandwidth, are being utilized at their maximum
capacity and will cause performance issues for the system.
However, in a dynamic cloud system, at which threshold an
anomaly occurs can shift. Specifically, during periods of low
demand, a sudden spike in resource usage might be considered
an anomaly. However, during peak demand periods, the system
might be designed to handle much higher resource usage, thus
the same usage level would not be considered an anomaly.
Furthermore, the individual preferences of engineers make the
setting of universally acceptable static thresholds complex.
What might be a suitable threshold for one engineer could
be too high or too low for another, leading to potential issues
being overlooked or an excessive number of false alarms [35].

Technically, anomaly segment detection can be formulated
as a spike detection problem. By detecting an uprush in
workload, the early warning of potential system anomaly can
be identified and root cause localization will be enabled. A
score that describes the variation trend of a KPI is computed
as follows:

ri =

∑i+l−1
k=i pk∑i−1
j=i−l pj

(2)

where l denotes the historical lags taken into consideration.
If the value ri is greater than a large threshold γ, it suggests
that the usage of resources as indicated by the KPI starts to
undergo a spike and we denote the start point of overload as
ts. Once the KPI value drops below the value of ts, it signifies
that the overload ends; the endpoint of the overload is denoted
as te. In other words, xte < xts and xte−1 > xts .

Our approach allows for the detection of anomaly segments
by considering the variation trend of KPI, effectively marking
the beginning and endpoint of anomaly segments. This can
be a particularly beneficial preprocess step for subsequent
correlation analysis.

D. Similarity Analysis

Motivated by [14], we propose to compute the similarity of
the alarm KPI and VM KPIs to measure the degree of the root
cause. The intuition behind this is that if a VM is responsible
for triggering an overload, its KPI should exhibit a significant
similarity with the host cluster’s KPI, especially during periods
of overload. If a VM is indeed the root cause of an overload,
it is expected that its resource usage pattern would reflect the
pattern of the host resource usage.

Although there exist some approaches that can be used
to calculate the similarity of monitoring KPIs, such as
AID [14], HALO [36], and CMMD [11], however, in real-
time cloud computing systems, timely root cause localization
is paramount. Traditional algorithms such as Dynamic Time
Warping (DTW) might not be suitable for such scenarios due
to their high time complexity, which can be prohibitive for
processing large volumes of data in a real-time manner.

Thus we transform the KPIs into symbolic sequences and
then compute the similarity between these sequences using the
Jaccard similarity coefficient. To obtain the discrete representa-
tion with symbols, a discretization technique that will produce

407

symbols with equal probability is desired. As proved by [31],
the normalized KPIs have nearly Gaussian distributions. It’s
easy to pick equal-sized areas under the Gaussian distribution
curve using lookup tables for the cut line coordinates, slicing
the under-the-Gaussian-curve area. Suppose we have α sym-
bols in the SAX representation, then the breakpoints refer to a
sort of numbers β = {β1, β2, ..., βα} such that the area under
normalized Gaussian distribution curve between βi to βi+1 is
equal to 1

α . The PAA representation element in Section.III-C
between βi to βi+1 will be assigned with the ith symbol shown
as follows:

si = alphabetl, if βl ≤ pi ≤ βl+1 (3)

where, alphabeti denotes the ith symbol and si denotes the
ith element of the SAX representation S. An example of SAX
representation of a monitoring KPI with w = 20, α = 9 is
shown in Fig.4.

We adopt the Jaccard similarity coefficient rather than other
similarity measures because of its advantages when dealing
with symbolic sequences like the SAX representation [37].
Moreover, Jaccard similarity is easy to compute and can effec-
tively capture the similarity between two symbolic sequences
regardless of their lengths. This makes it very suitable for our
case, where the lengths of the symbolic sequences could vary.
Then, the Jaccard similarity can be computed as follows:

Jaccard(Shost, Si) =
|Shost ∩ Si|
|Shost ∪ Si|

(4)

where Shost is the SAX representation of the host cluster’s
KPI and Si is the SAX representation of individual VM KPI
Xi.

E. Causality Analysis

The Symbolic Aggregate Approximation (SAX) method is
effective in reducing the dimension of raw KPI, however, the
computation of SAX representation-based similarity does not
provide any insights into the causality between VM KPIs and
alarm KPIs. As mentioned by [38], the ability of Granger
causality analysis to analyze the correlation between KPIs can
be a key factor for improving the accuracy of the root cause
localization. By using Granger Causality in conjunction with
SAX representation, we can not only analyze large quantities
of time series data effectively but also gain insights into the
potential causality between different KPIs. That is why we
take Granger Causality [39] as a supplement.

Granger Causality is a statistical hypothesis test used to
determine if one KPI is useful in forecasting another KPI [40].
For instance, if a VM KPI undergoes an uprush and causes
the alarm KPI to trigger alerts, i.e., the change in the VM
KPI precedes the changes in the alarm KPI, then Granger
causality exists from the alarm KPI to the VM KPI. It should
be noted that Granger Causality is unidirectional, which means
that if VM KPI Granger causes alarm KPI, it does not imply
that alarm KPI Granger causes VM KPI. In our case, we
are interested in understanding how VM KPIs influence the

alarm KPI of the host cluster, so we focus on the Granger
causality from the VM KPIs to the alarm KPI. Specifically,
assuming that the two KPIs can be well described by Gaussian
autoregressive processes, the autoregression (AR) of alarm
KPI without and with information from VM KPI can be
written as follows:

ptalarm = â0 +

q∑
j=1

âjp
t−j
alarm + ε̂t (5)

ptalarm = a0 +

q∑
j=1

ajp
t−j
alarm +

q∑
j=1

bjp
t−j
i + εt (6)

where the first equation uses the past values of the PAA
representation of host KPI Xhost while the second includes
the past values of the PAA representation of both Xhost and
Xvm. Furthermore, âj is the autoregression coefficients for
Xhost, while aj and bj are the autoregression coefficients
for Xhost with the contribution of both Xhost and Xvm’s
historical values. Both ε̂t and εt are residual terms assumed to
be Gaussian and q is model order which represents the amount
of past information that will be included in the prediction of
the future sample. Then we conduct the F-statistic test:

Fvm→host =

∑te
t=ts+q(ε̂

2
t − ε2t)/q∑te

t=ts+q ε
2
t/(te − ts − 2q − 1)

(7)

where ε̂2t and ε2t represent the mean square error (MSE) of
the AR model of host KPI without and with information from
VM KPI. ts and te are the start point and end point of the
detected overload. The F-statistic test follows an F-distribution
with q and te− ts− 2p− 1 degrees of freedom under the null
hypothesis that the VM KPI does not Granger-cause the host
KPI. The calculated F-statistic can be a good indicator of the
VM KPI Granger-causality to the host KPI.

After both the similarity and causality analyses are per-
formed, KPIRoot combines these two scores to create a more
comprehensive correlation score for each VM KPI. Specifi-
cally, the correlation score is a weighted sum of similarity
score and causality score:

ci = λ× Jaccard(Shost, Si) + (1− λ)× Fvm→host (8)

where ci is the correlation score between the ith VM KPI and
the alarm KPI. The balance weight λ is a hyper-parameter. In
our experiments, this parameter is set to be 0.9.

F. Complexity Analysis

The proposed method KPIRoot is summarized in Algo-
rithm.1. The computation of our method mainly lies in the
similarity and causality analysis. In industrial practice, w ≈√
n, which means the lengths of SAX representation of KPIs

are roughly
√
n. So, the time complexity of obtaining SAX

representation is O(
√
n). On one hand, the time complexity of

Jaccard similarity is directly proportional to the KPI length, so
the complexity of similarity analysis is O(

√
n). On the other

hand, the complexity of Granger causality mainly depends on

408

Algorithm 1 KPI Root Cause Localization
Input: The alarm KPI of the host Xalarm; The KPIs of VMs

Xi, i ∈ {1, 2, ...,m};
Output: The correlation scores of VM KPIs that correlate to

the anomaly of alarm KPI ci
1: for i = 1; i ≤ w; i++ do
2: pialarm = w

n

∑ n
w i

j= n
w (i−1)+1 x

j
alarm

3: end for
4: // Anomaly Segment Detection
5: ts = {t|rt =

∑t+l−1
k=t pk

alarm∑t−1
j=t−l p

j
alarm

> γ}
6: te = {min(t)|pte < pts and pte−1 > pts}
7: palarm = palarm[ts : te]
8: sialarm = {alphabetl, s.t. βl ≤ pialarm ≤ βl+1}
9: for i = 1; i ≤ m; i++ do

10: // Similarity Analysis
11: for k = 1; k < m; k ++ do
12: pki = w

n

∑ n
w k

j= n
w (k−1)+1 x

k
i

13: pi = pi[ts : te]
14: ski = {alphabetl, s.t. βl ≤ pki ≤ βl+1}
15: end for
16: Jaccard(Shost, Si) =

|Shost∩Si|
|Shost∪Si|

17: // Causality Analysis
18: for t = ts + q; t < te; t++ do
19: ptalarm = â0 +

∑q
j=1 âjp

t−j
alarm + ε̂t

20: ptalarm = a0 +
∑q

j=1 ajp
t−j
alarm +

∑q
j=1 bjp

t−j
i + εt

21: end for
22: Fvm→host =

∑te
t=ts+q(ε̂

2
t−ε2t)/q∑te

t=ts+q ε2t/(te−ts−2q−1)

23: ci = λ× Jaccard(Shost, Si) + (1− λ)× Fvm→host

24: end for
25: return ci

the autoregression of Phost, which is O(
√
n × q3), where

q is the time lag of Granger causality (usually very small).
Thus, the complexity of KPIRoot is O(

√
n× (q3 + 2)). As a

comparison, the time efficiency of methods like AID (based on
DTW) is O(n2), let alone more complex deep learning-based
methods like CMMD. Therefore, KPIRoot is a more suitable
method for industrial applications that demand real-time root
cause localization.

IV. EVALUATION

To fully evaluate the effectiveness of our proposed approach,
KPIRoot, we use three real-world monitoring KPI datasets
from the cloud service systems of Cloud H. Particularly, we
aim to answer the following research questions (RQs):

• RQ1: How effective is KPIRoot compared with KPI root
cause localization baselines?

• RQ2: How effective is each component of KPIRoot in root
cause localization?

• RQ3: How efficient is KPIRoot in localizing root cause KPIs
compared to baselines?

TABLE I
STATISTICS OF INDUSTRIAL DATASET

Industrial Dataset A Dataset B Dataset C

Host Clusters 16 6 7

VM Number 120∼803 21∼26 41∼57

KPI Length 5,928,480 17,040 37,200

Root Causes 4∼36 3∼8 2∼15

A. Experiment Setting

1) Datasets: To confirm the practical significance of KPI-
Root, we collect three datasets from large-scale online services
in three Available Zones (AZs) of Cloud H. The statistics of
three industrial datasets are shown in Table I. Various VM
KPIs and alarm KPIs monitor the status of the service. The
VM KPIs typically measure the healthy status of each VM,
including resource usage metrics like CPU, memory, I/O, and
bandwidth usage. The alarm KPI monitors the runtime status
at the host cluster level, which is usually positively correlated
to the VM KPIs. Both the artifacts and data are available on
https://github.com/WenweiGu/KPIRoot.

2) Evaluation Metrics: In the following experiments, the
F1-score is utilized to evaluate the performance of root cause
localization results. We employ Precision: PC = TP

TP+FP ,
Recall: RC = TP

TP+FN , F1 score: F1 = 2 · PC·RC
PC+RC . To

be specific, TP is the number of correctly localized VM
KPIs; FP is the number of incorrectly predicted VM KPIs;
FN is the number of root cause VM KPIs that failed to be
predicted by the model. F1 score is the harmonic mean of
the precision and recall. In real-world applications, since the
number of root cause KPIs is unknown, software engineers
will first investigate top k recommended results by root cause
localization methods. Hit Rate@k is a widely used metric to
measure whether the correct root causes (in our case, the root
cause VM KPIs) are within the recommended top k results.
We adopt Hit Rate@5 and Hit Rate@10 as evaluation metrics
in our experiments.

B. Experimental Results

1) RQ1 The effectiveness of KPIRoot: To answer this
research question, we compare the performance of KPIRoot
with three statistical correlation measurements based methods,
namely, Kendall correlation, Spearman correlation, and Cloud-
Scout [13], a DTW distance-based method AID [14], a graph
centrality-based method LOUD [41], a conditional entropy-
based method HALO [36] and a graph neural network based
method CMMD [11]. The results are shown in Table II, where
the best F1 scores, Hit@5 and Hit@10 are all marked with
boldface, while the second-best results are underlined. We can
see that the average F1 scores, Hit@5 and Hit@10 of KPIRoot
outperform all baseline methods in three datasets. In Dataset B
and Dataset C, we can observe that the improvement achieved
by KPIRoot is more significant than in Dataset A. This is
because Dataset B and Dataset C focus on KPIs (e.g., requests
rate) related to the load balancer that manages the distribution

409

TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT ROOT CAUSE LOCALIZATION METHODS

Methods Dataset A Dataset B Dataset C
F1 Score Hit@5 Hit@10 F1 Score Hit@5 Hit@10 F1 Score Hit@5 Hit@10

Kendall 0.651 0.562 0.728 0.605 0.594 0.770 0.657 0.635 0.727
Spearman 0.681 0.587 0.753 0.619 0.591 0.737 0.681 0.598 0.715

CloudScout 0.699 0.612 0.788 0.673 0.607 0.772 0.715 0.612 0.706
LOUD 0.736 0.652 0.813 0.736 0.625 0.824 0.709 0.653 0.829
AID 0.746 0.652 0.749 0.673 0.618 0.794 0.665 0.613 0.729

HALO 0.734 0.651 0.842 0.632 0.569 0.811 0.719 0.635 0.789
CMMD 0.776 0.632 0.833 0.679 0.594 0.848 0.721 0.667 0.801

KPIRoot 0.859 0.731 0.909 0.860 0.749 0.946 0.829 0.713 0.895

TABLE III
EXPERIMENTAL RESULTS OF THE ABLATION STUDY OF KPIROOT

Methods Dataset A Dataset B Dataset C
F1 Score Hit@5 Hit@10 F1 Score Hit@5 Hit@10 F1 Score Hit@5 Hit@10

KPIRoot w/o Similarity 0.735 0.646 0.797 0.709 0.694 0.777 0.659 0.627 0.780
KPIRoot w/o Causality 0.801 0.694 0.858 0.748 0.706 0.869 0.731 0.675 0.823

KPIRoot 0.859 0.731 0.909 0.860 0.749 0.946 0.829 0.713 0.895

of network traffic across physical machines, which makes the
VM request rate anomalies inherently precede host cluster
anomalies. It should be noted that, as indicated in Table II,
the number of root causes is often larger than 5. Therefore,
not all root causes can be captured within the top 5 predictions.
Given this, achieving Hit@5 scores of over 70% is significant
enough, as it means our method is correctly identifying a large
portion of the root causes within just the top 5 predictions.
Furthermore, we observe that the F1 score and Hit@10 are
high enough for industrial application, further demonstrating
their effectiveness.

We can observe that baseline models like Kendall, Spear-
man, CloudScout, and AID have worse performance. These
coefficient-based methods fundamentally measure the simi-
larity between the shape of KPIs. However, high similarity
does not necessarily imply causality because a high similarity
can occur due to a shared underlying cause, rather than one
KPI directly influencing another KPI. Though CMMD has the
ability to capture complex, nonlinear relationships between
KPIs through graph attention neural networks and achieves a
Hit@10 of 0.801∼0.848, it still falls short of considering the
causality between VM KPIs and the host cluster KPI. HALO
computes the conditional entropy between VM KPIs and the
host KPI, which somehow alleviates the defect of neglecting
the causality between KPIs. In contrast, our method incorpo-
rates both the similarity analysis through SAX representation
similarity and causality analysis through the Granger causality
test, leading to better root cause localization accuracy. The
LOUD method applies graph centrality to pinpoint the root
causes of issues. However, the way in which the graph is
constructed can significantly impact the results. As a result, the
LOUD method fails to deliver optimal performance, making
it less effective in accurately identifying the root causes of
problems in our context.

2) RQ2 The effectiveness of components in KPIRoot: To
answer this research question, we conducted an ablation study
on KPIRoot. Particularly, we compare two baseline models
removing the similarity and causality analysis part of KPIRoot
to investigate the contribution of these two designs.

• KPIRoot w/o Similarity This baseline is a variant of KPIRoot
that calculates the correlation score between KPIs merely
based on the Granger causality test.

• KPIRoot w/o Causality This baseline removes the causality
analysis part and computes the correlation score based on
the SAX representation similarity.

Table III shows the performance comparison between KPI-
Root and its variants. In summary, the effectiveness of KPI-
Root is enhanced with the utilization of similarity analysis and
causality analysis, with the former making a more significant
contribution. Indeed, the variant without the Granger causality
test is better than all correlation coefficient-based methods.
SAX representation captures the shape and trends in the data,
rather than just the raw values, which is less sensitive to noise.
Thus it allows for the detection of patterns that could be missed
by other methods that focus only on pointwise correlations. In
contrast, Pearson, Kendall, and Spearman correlations are sus-
ceptible to noise because they perform pointwise calculations.
As such, outliers within the KPIs can have a significant impact
on the results of the correlation coefficients. The variants
without SAX representation similarity can still yield relatively
satisfactory performance because Granger causality predicts
the future values of a KPI based on its own past and the past
of another KPI, which makes it powerful for identifying the
potential causal relationships between two KPIs. While the
Granger causality test may not capture the comprehensive and
complex relationships between KPIs, it is still effective for
identifying potential causality thus providing valuable insights
for root cause analysis.

410

Fig. 5. Root Cause Localization Time for All Methods

3) RQ3 The efficiency of KPIRoot: In this section, we
evaluate the efficiency of KPIRoot in large-scale cloud systems
of Cloud H. The average running time of each method is
shown in Fig. 5, from which we can observe that KPI-
Root is the most efficient with an average execution time
of around only 5 seconds, which suggests that KPIRoot is
capable of providing real-time root cause analysis, meeting
the requirements of large-scale cloud systems where timely
identification of root causes is critical. The observed result
is aligned with the time complexity analysis detailed in
Section III-F. As for methods like AID and CMMD, their
performances are less than satisfactory due to their inherent
computational complexities. AID, with its time complexity of
O(n2), suffers from an average runtime of more than one
hundred seconds. On the other hand, CMMD, which applies
graph attention neural networks, requires high computational
resources, which also leads to a slower execution time and
makes it less efficient. Therefore, both AID and CMMD
fail to deliver the desired levels of efficiency, particularly
in large-scale, real-time environments. Baseline methods like
Kendall and Spearman may seem appealing due to their lower
computation times. However, these apparent gains are offset by
their inferior accuracy levels. As a result, their use can lead to
inaccurate root-cause diagnoses and subsequently ineffective
problem-solving solutions.

In summary, the evaluation results highlight KPIRoot’s
superiority in terms of both efficiency and accuracy, which
makes KPIRoot a highly promising tool for conducting real-
time root cause analysis within large-scale cloud systems.

V. INDUSTRIAL EXPERIENCE

In this section, we share our experience of deploying KPI-
Root in the cloud system of Cloud H, a full-stack cloud system
that consists of an infrastructure layer, a platform layer, and
an application layer. To support a large number of customers,
each of our services is supported by multiple clusters with
tens of hundreds of virtual instances (e.g., virtual router) or
devices. The collective workload of each cluster is continu-
ously monitored using an alarm KPI. When abnormal traffic
impacts these services, for instance, due to overwhelming
requests overloading a service, an anomaly is swiftly detected
based on the alarm KPI. This triggers a root cause analysis
procedure to pinpoint the specific nodes (e.g., VMs) and take
prompt mitigating actions. In our previous practice, manual
inspection is feasible given the limited scale of each cluster.
So, we can check each specific KPI of the node, compare it

Fig. 6. Case Study of KPIRoot

with the alarm KPI (with similarity comparison tools), and find
the root cause. However, this process proved to be error-prone
and labor-intensive, particularly as the scale of each service
expanded. On average, it took between thirty minutes to one
hour to identify and mitigate the root causes.

To alleviate these issues, we have deployed KPIRoot in
Cloud H since Nov 2022. Specifically, KPIRoot operates by
automatically fetching KPIs collected from the monitoring
backends and applying the algorithm to calculate the corre-
lation score in real time. Using KPIRoot, the potential root
causes are returned to engineers. In addition, visualization
tools are provided, making it easier for engineers to understand
the system’s behavior and performance.

In Fig. 6, we demonstrate the practical application of the
root cause analysis tool KPIRoot in real industrial scenarios.
While our system may encompass tens to hundreds of KPIs, as
outlined in Table I, for the sake of conciseness, we showcase
only two KPIs in this illustration. In this case, we initially
received an alert indicating that the overall traffic for the host
cluster had abruptly surpassed the predefined threshold. This
requires immediate measures to pinpoint the root cause and
throttle its throughput to avoid resource exhaustion within
the cluster. However, this is quite challenging given the large
number of KPIs needed to check, and the root-cause KPI may
not be readily identifiable visually, as its shape similarity may
not correspond directly with the alarm KPI. Given that, the
root cause analysis takes tens of minutes to one hour to check
manually, leading to delayed mitigation of the sudden traffic
spike. With KPIRoot, the root cause of KPI can be quickly
localized, generally within five minutes. With this result, we
throttle the throughput of VM1 immediately after the alarm
KPI is fired. As shown in Figure 6, the overall traffic is limited,
and the alarm KPI returns back to a normal range quickly.

KPIRoot has been deployed in all major regions of our
company, covering eighteen critical network services, e.g.,
Linux Virtual Server (LVS), NGINX, Network Address Trans-
lation (NAT), and DNS services. It has been serving in our
production environment for more than ten months, reducing
the average root cause localization time from 30 minutes to 5
minutes. Following the deployment of the KPIRoot service, the
feedback from engineers has been overwhelmingly positive.
In terms of computational efficiency, KPIRoot has reduced

411

the computational load significantly compared to previous
methods. The system can perform real-time RCA, identify-
ing potential issues quickly and allowing engineers to take
immediate action. In terms of accuracy, KPIRoot’s design of
combining similarity and causality analysis has proven highly
precise in identifying root causes. This leads to more effective
problem resolution and significantly reduced revenue loss.

VI. DISCUSSION

In this section, we discuss the difference between our
approach and existing root cause analysis approaches for
microservice systems and why they are not applicable in
our industrial scenario. Besides, we discuss the influence of
SAX representation in KPIRoot. Finally, we identified some
potential threats to the validity of our study.

A. Root Cause Analysis for Microservice System

Our objective shares some similarities with root cause anal-
ysis in microservice systems, however, there are several main
differences in terms of the application scenarios. Firstly, rather
than localizing the root causes of application/service failures
in microservice systems, where these applications are at the
same level, our problem is top-down root localization. When
we observe an anomaly at the system level, we investigate
and analyze the underlying VM instance-level information.
Secondly, due to VM isolation, each VM instance operates
independently and is isolated from other VMs and the host
system. This leads to sparse or even non-existent invocation
dependency among them, making the construction of a service
dependency graph as done in existing works very challenging.

Existing Methods like FRL-MFPG [42] and ServiceR-
ank [43] rely on the construction of a service dependency
graph and the execution of a second-order random walk,
which can become highly time-consuming with complexity
exceeding O(n2). As for HRLHF [44], the large graph size
makes causal discovery computationally intensive. Further-
more, the delay incurred by waiting for engineers to provide
human feedback poses an additional obstacle for real-time
localization. However, the analysis delay should be less than
the sampling interval, e.g., 1 minute in our practical scenarios,
making these methods unsuitable for industrial deployment.

B. The Influence of SAX Representation

The anomaly segment detection serves as a precursor to
root cause localization and may influence the subsequent
task. Since SAX representation is a downsampling method,
it may induce the omission of the original KPI information.
However, the alarm KPI is carefully selected by experienced
engineers based on their experience. These KPIs typically
exhibit distinct anomaly patterns when system-level issues
occur, making them highly reliable system health indicators,
even if SAX may cause some content of information loss.
Given the detected anomalies in alarm KPIs, our target is to
find the VMs causing performance anomalies, which should
also have obvious patterns in the VM KPI. So the SAX
representation has little influence on the localization part.

C. Threats to Validity

We have identified the following potential threats to the
validity of our study:

Internal threats. The implementation of baselines and
parameter settings constitutes one of the internal threats to our
work’s validity. To mitigate these threats, we utilized the open-
sourced code released by the authors of the papers or packages
on GitHub for all baselines. As for our proposed approach, the
source code has been reviewed meticulously by the authors, as
well as several experienced software engineers, to minimize
the risk of errors and increase the overall confidence in our
results. For parameter settings, as our algorithm KPIRoot has
few parameters, we find the most suitable configurations based
on the best results obtained in different parameters.

External threats. Our experiments are conducted based
on real-world datasets collected from Cloud H over more
than two years. The evaluation requires engineers to inspect
and label the root cause KPIs manually. Label noises are
inevitable during the manual labeling process. However, allevi-
ation strategies taken by engineers further ensure the accuracy
of labeled root causes. Therefore, we believe the amount of
noise is small and does not have a significant impact on
the experiment results. On the other hand, the results may
vary between different cloud service providers, industries,
or specific use cases. Nevertheless, we believe that our ex-
perimental results, obtained from large-scale online systems
within a prominent cloud service company serving millions of
users, can demonstrate the generality and effectiveness of our
proposed approach, KPIRoot.

VII. RELATED WORK
A. Anomaly Detection in Cloud Systems

Ensuring the optimal performance of cloud systems is
an imperative task. Monitoring KPIs are used to perceive
the status of the cloud systems and facilitate analysis when
performance anomalies occur. Many works [1], [45]–[49] have
been proposed for proactively discovering the unexpected or
anomalous behaviors of the multivariate monitoring metric.
Anomaly detection in cloud systems has been an important and
widely studied topic as it ensures the reliability and efficiency
of cloud systems. However, anomaly detection is regarded as
a black box module that only predicts whether an anomaly
happens, which is not enough for engineers to troubleshoot the
system failure. In other words, once a performance anomaly
has been detected in a cloud service system, further analyses
should be enacted to pinpoint some abnormal metrics that
are likely to be the possible root causes of that performance
anomaly.

B. Root Cause Localization in Cloud Systems

Determining the root cause of performance anomalies for
online service systems has been a hot topic. The goal of
root cause localization with monitoring metrics data in cloud
systems is to localize a subset of the monitored KPIs. Then,
they can troubleshoot these specific parts of the system to
alleviate the performance anomaly. LOUD [41] assumes that

412

the services of anomalous KPIs are likely to result in anoma-
lous behavior of services it correlates with. Thus, LOUD
applies graph centrality to identify the degree of the KPIs that
correlate to the observed performance anomaly. AID [14] is an
approach that measures the intensity of dependencies between
monitoring KPIs of cloud services. It calculates the similarities
between the status KPIs of the caller and the callee. Then,
AID aggregates the similarities to produce a unified value as
the intensity of the dependency. It can also be deployed as
a root cause localization tool as it can output the similarity
between monitoring metrics and the KPI that triggers alerts.
Similarly, CloudScout [13] employs the Pearson Correlation
Coefficient over KPIs at the physical machine level, such as
CPU usage, to calculate the similarity between services.

There are also many works focusing on searching fault-
indicating attribute combinations of KPI data. CMMD [11]
is proposed to perform cross-metric root cause localization
through a graph attention network to model the relationship
between fundamental and derived metrics. While HALO [36]
proposed a hierarchical search approach to capture the rela-
tionship among attributes based on conditional entropy and
locate the fault-indicating combination. Another approach
iDice [50] treats the root cause as a combination of attribute
values, i.e., the anomaly can be easily identified through
the co-occurrence of some specific attribute dimensions. A
Fisher distance-based score function is utilized for ranking the
combination of the attributes, and effective combinations will
be output. However, iDice is not suitable for large-scale issue
reports with high-dimensional metrics from cloud systems.
MID [51] employs a meta-heuristic search that automatically
detects dynamic emerging issues from large-scale issue reports
with higher efficiency.

It is worth noting that, in our case, the monitoring metrics
are not aggregated along different attribute dimensions through
complex calculations of the raw data. Indeed, the monitoring
metrics in our scenario directly reflect the run-time state
of an entity, e.g., the throughput of a client VM. In our
practice, obtaining the root cause at a granularity of metric
level is enough for engineers to troubleshoot the performance
anomalies. Thus, we formulate our problem as localizing a
subset of the monitored KPIs.

VIII. CONCLUSION

In this paper, we propose KPIRoot, an effective and efficient
framework for root cause analysis in practical cloud systems
with monitoring KPIs. Specifically, KPIRoot integrates the
strength of similarity analysis and causality analysis, offering
a more comprehensive correlation evaluation of KPI, thus en-
hancing the accuracy of root cause localization. Additionally,
the utilization of SAX representation of KPI significantly im-
proves the efficiency of the method. Extensive experiments on
three industrial datasets show that KPIRoot achieves 0.850 F1-
Score and 0.916 Hit@10 with the highest efficiency, outper-
forming all the baselines. Moreover, the successful deployment
of our approach in large-scale industrial applications further
demonstrates its practicality.

IX. ACKNOWLEDGMENTS
The work described in this paper was supported by the

Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (No. CUHK 14206921 of the
General Research Fund) and Fundamental Research Funds for
the Central Universities, Sun Yat-sen University (No. 76250-
31610005).

REFERENCES

[1] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G. Lou, C. Li,
Y. Wu, R. Yao et al., “Predicting node failure in cloud service systems,”
in Proceedings of the 2018 26th ACM joint meeting on European
software engineering conference and symposium on the foundations of
software engineering, 2018, pp. 480–490.

[2] B. Yu, J. Yao, Q. Fu, Z. Zhong, H. Xie, Y. Wu, Y. Ma, and P. He, “Deep
learning or classical machine learning? an empirical study on log-based
anomaly detection,” in Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, 2024, pp. 1–13.

[3] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion, 2016, pp. 102–111.

[4] J. Kuang, J. Liu, J. Huang, R. Zhong, J. Gu, L. Yu, R. Tan, Z. Yang,
and M. R. Lyu, “Knowledge-aware alert aggregation in large-scale cloud
systems: a hybrid approach,” in Proceedings of the 46th International
Conference on Software Engineering: Software Engineering in Practice,
2024, pp. 369–380.

[5] J. Liu, S. He, Z. Chen, L. Li, Y. Kang, X. Zhang, P. He, H. Zhang,
Q. Lin, Z. Xu et al., “Incident-aware duplicate ticket aggregation for
cloud systems,” arXiv preprint arXiv:2302.09520, 2023.

[6] J. Liu, S. Wang, A. Zhou, S. A. Kumar, F. Yang, and R. Buyya, “Using
proactive fault-tolerance approach to enhance cloud service reliability,”
IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp. 1191–1202,
2016.

[7] Y. Su, Y. Zhao, W. Xia, R. Liu, J. Bu, J. Zhu, Y. Cao, H. Li, C. Niu,
Y. Zhang et al., “Coflux: robustly correlating kpis by fluctuations for
service troubleshooting,” in Proceedings of the International Symposium
on Quality of Service, 2019, pp. 1–10.

[8] N. Zhao, J. Zhu, R. Liu, D. Liu, M. Zhang, and D. Pei, “Label-less: A
semi-automatic labelling tool for kpi anomalies,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 2019,
pp. 1882–1890.

[9] N. Zhao, J. Chen, Z. Wang, X. Peng, G. Wang, Y. Wu, F. Zhou, Z. Feng,
X. Nie, W. Zhang et al., “Real-time incident prediction for online service
systems,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 315–326.

[10] T. Huang, P. Chen, J. Zhang, R. Li, and R. Wang, “A transferable time
series forecasting service using deep transformer model for online sys-
tems,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, 2022, pp. 1–12.

[11] S. Yan, C. Shan, W. Yang, B. Xu, D. Li, L. Qiu, J. Tong, and
Q. Zhang, “Cmmd: Cross-metric multi-dimensional root cause analysis,”
in Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 4310–4320.

[12] G. Yu, P. Chen, Y. Li, H. Chen, X. Li, and Z. Zheng, “Nezha:
Interpretable fine-grained root causes analysis for microservices on
multi-modal observability data,” in Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2023, pp. 553–565.

[13] J. Yin, X. Zhao, Y. Tang, C. Zhi, Z. Chen, and Z. Wu, “Cloudscout: A
non-intrusive approach to service dependency discovery,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1271–1284,
2016.

[14] T. Yang, J. Shen, Y. Su, X. Ling, Y. Yang, and M. R. Lyu, “Aid:
efficient prediction of aggregated intensity of dependency in large-scale
cloud systems,” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2021, pp. 653–665.

[15] J. Zhang, W. Wu, J.-t. Huang, Y. Huang, W. Wang, Y. Su, and M. R.
Lyu, “Improving adversarial transferability via neuron attribution-based
attacks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 14 993–15 002.

413

[16] J. Zhang, W. Gu, Y. Huang, Z. Jiang, W. Wu, and M. R. Lyu, “Curvature-
invariant adversarial attacks for 3d point clouds,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 38, no. 7, 2024, pp.
7142–7150.

[17] Y. Sharma, D. Bhamare, N. Sastry, B. Javadi, and R. Buyya, “Sla
management in intent-driven service management systems: A taxonomy
and future directions,” ACM Computing Surveys, 2023.

[18] Q. Cheng, D. Sahoo, A. Saha, W. Yang, C. Liu, G. Woo, M. Singh,
S. Saverese, and S. C. Hoi, “Ai for it operations (aiops) on cloud
platforms: Reviews, opportunities and challenges,” arXiv preprint
arXiv:2304.04661, 2023.

[19] S. Singh, R. Batheri, and J. Dias, “Predictive analytics: How to improve
availability of manufacturing equipment in automotive firms,” IEEE
Engineering Management Review, 2023.

[20] S. Tuli, S. S. Gill, P. Garraghan, R. Buyya, G. Casale, and N. Jennings,
“Start: Straggler prediction and mitigation for cloud computing envi-
ronments using encoder lstm networks,” IEEE Transactions on Services
Computing, 2021.

[21] H. Wang, P. Nguyen, J. Li, S. Kopru, G. Zhang, S. Katariya, and
S. Ben-Romdhane, “Grano: Interactive graph-based root cause analysis
for cloud-native distributed data platform,” Proceedings of the VLDB
Endowment, vol. 12, no. 12, pp. 1942–1945, 2019.

[22] J. Qiu, Q. Du, K. Yin, S.-L. Zhang, and C. Qian, “A causality mining and
knowledge graph based method of root cause diagnosis for performance
anomaly in cloud applications,” Applied Sciences, vol. 10, no. 6, p. 2166,
2020.

[23] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing environ-
ments and applications,” in 2010 24th IEEE international conference on
advanced information networking and applications. IEEE, 2010, pp.
446–452.

[24] M. Latah and L. Toker, “Artificial intelligence enabled software-defined
networking: a comprehensive overview,” IET networks, vol. 8, no. 2, pp.
79–99, 2019.

[25] P. Kaushik, A. M. Rao, D. P. Singh, S. Vashisht, and S. Gupta, “Cloud
computing and comparison based on service and performance between
amazon aws, microsoft azure, and google cloud,” in 2021 International
Conference on Technological Advancements and Innovations (ICTAI).
IEEE, 2021, pp. 268–273.

[26] W. Gu, J. Liu, Z. Chen, J. Zhang, Y. Su, J. Gu, C. Feng,
Z. Yang, and M. Lyu, “Performance issue identification in cloud
systems with relational-temporal anomaly detection,” arXiv preprint
arXiv:2307.10869, 2023.

[27] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,” in
Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 153–167.

[28] D. Wang, Z. Chen, J. Ni, L. Tong, Z. Wang, Y. Fu, and H. Chen,
“Hierarchical graph neural networks for causal discovery and root cause
localization,” arXiv preprint arXiv:2302.01987, 2023.

[29] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram, “Scheduler vul-
nerabilities and coordinated attacks in cloud computing,” Journal of
Computer Security, vol. 21, no. 4, pp. 533–559, 2013.

[30] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2012.

[31] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of
time series, with implications for streaming algorithms,” in Proceedings
of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery, 2003, pp. 2–11.

[32] D. Minnen, C. Isbell, I. Essa, and T. Starner, “Detecting subdimen-
sional motifs: An efficient algorithm for generalized multivariate pattern
discovery,” in Seventh IEEE International Conference on Data Mining
(ICDM 2007). IEEE, 2007, pp. 601–606.

[33] P. Senin and S. Malinchik, “Sax-vsm: Interpretable time series classifica-
tion using sax and vector space model,” in 2013 IEEE 13th international
conference on data mining. IEEE, 2013, pp. 1175–1180.

[34] C. Guo, H. Li, and D. Pan, “An improved piecewise aggregate ap-
proximation based on statistical features for time series mining,” in
Knowledge Science, Engineering and Management: 4th International

Conference, KSEM 2010, Belfast, Northern Ireland, UK, September 1-
3, 2010. Proceedings 4. Springer, 2010, pp. 234–244.

[35] N. Zhao, J. Chen, X. Peng, H. Wang, X. Wu, Y. Zhang, Z. Chen,
X. Zheng, X. Nie, G. Wang et al., “Understanding and handling alert
storm for online service systems,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Software En-
gineering in Practice, 2020, pp. 162–171.

[36] X. Zhang, C. Du, Y. Li, Y. Xu, H. Zhang, S. Qin, Z. Li, Q. Lin,
Y. Dang, A. Zhou et al., “Halo: Hierarchy-aware fault localization for
cloud systems,” in Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, 2021, pp. 3948–3958.

[37] X. He, C. Shao, and Y. Xiong, “A non-parametric symbolic approximate
representation for long time series,” Pattern Analysis and Applications,
vol. 19, pp. 111–127, 2016.

[38] L. Mariani, M. Pezzè, O. Riganelli, and R. Xin, “Predicting failures in
multi-tier distributed systems,” Journal of Systems and Software, vol.
161, p. 110464, 2020.

[39] A. Shojaie and E. B. Fox, “Granger causality: A review and recent
advances,” Annual Review of Statistics and Its Application, vol. 9, pp.
289–319, 2022.

[40] A. Arnold, Y. Liu, and N. Abe, “Temporal causal modeling with
graphical granger methods,” in Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2007, pp. 66–75.

[41] L. Mariani, C. Monni, M. Pezzé, O. Riganelli, and R. Xin, “Localizing
faults in cloud systems,” in 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 2018,
pp. 262–273.

[42] Y. Chen, D. Xu, N. Chen, and X. Wu, “Frl-mfpg: Propagation-aware
fault root cause location for microservice intelligent operation and main-
tenance,” Information and Software Technology, vol. 153, p. 107083,
2023.

[43] M. Ma, W. Lin, D. Pan, and P. Wang, “Servicerank: Root cause iden-
tification of anomaly in large-scale microservice architectures,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 5, pp.
3087–3100, 2021.

[44] L. Wang, C. Zhang, R. Ding, Y. Xu, Q. Chen, W. Zou, Q. Chen,
M. Zhang, X. Gao, H. Fan et al., “Root cause analysis for microservice
systems via hierarchical reinforcement learning from human feedback,”
in Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023, pp. 5116–5125.

[45] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in International conference on learning representa-
tions, 2018.

[46] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Ling, Y. Yang, and M. R. Lyu,
“Adaptive performance anomaly detection for online service systems via
pattern sketching,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 61–72.

[47] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
2018 world wide web conference, 2018, pp. 187–196.

[48] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, 2019, pp. 3009–
3017.

[49] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, 2019, pp. 2828–
2837.

[50] Q. Lin, J.-G. Lou, H. Zhang, and D. Zhang, “idice: problem identifi-
cation for emerging issues,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 214–224.

[51] J. Gu, C. Luo, S. Qin, B. Qiao, Q. Lin, H. Zhang, Z. Li, Y. Dang, S. Cai,
W. Wu et al., “Efficient incident identification from multi-dimensional
issue reports via meta-heuristic search,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 292–
303.

414

